электросамокат купить в москве дешево, купить электроскутер
Физика Математика Решения задач Контрольная за первый курс Начала анализа Теория вероятности Теория поля Кратные и криволинейные интегралы Пределы, функции Вычислить интеграл Методические указания к контрольной Кафедра математики

Кафедра математики. Готовимся к выполнению контрольной, курсовой работы

Физические приложения криволинейных интегралов

С помощью криволинейных интегралов вычисляются

Работа поля

Определить массу проволоки, имеющей форму отрезка от точки A(1,1) до B(2,4). Масса распределена вдоль отрезка с плотностью .

Определить массу проволоки, имеющей форму дуги окружности от точки A(1,0) до B(0,1) с плотностью

Найти центр масс проволоки, имеющей форму кардиоиды

Вычислить момент инерции Ix проволоки в форме окружности x2 + y2 = a2 с плотностью ρ = 1.

Тело массой m брошено под углом к горизонту α с начальной скоростью v0. Вычислить работу силы притяжения за время движения тела до момента соударения с землей.

Вычислить индукцию магнитного поля в вакууме на расстоянии r от оси бесконечно длинного проводника с током I.

Рассмотрим эти приложения более подробно с примерами. Масса кривой Предположим, что кусок проволоки описывается некоторой пространственной кривой C. Пусть масса распределена вдоль этой кривой с плотностью ρ (x,y,z). Тогда общая масса кривой выражается через криволинейный интеграл первого рода Если кривая C задана в параметрическом виде с помощью векторной функции , то ее масса описывается формулой В случае плоской кривой, заданной в плоскости Oxy, масса определяется как или в параметрической форме Центр масс и моменты инерции кривой Пусть снова кусок проволоки описывается некоторой кривой C, а распределение массы вдоль кривой задано непрерывной функцией плотности ρ (x,y,z). Тогда координаты центра масс кривой определяются формулами где − так называемые моменты первого порядка. Моменты инерции относительно осей Ox, Oy и Oz определяются формулами

 

 

 

 

Набла – оператор Гамельтона

 

 

 


2.                                                        Нет никаких источников из токов завихренности.

 

 

 

 


2.                                                                                                                          Оператор Лапласа.

 

 

 

Если векторное поле можно представить в виде grad u, то поле называется потенциальным.

 

http://predtm.ru