Молекулярная физика и основы термодинамики Лабораторные работы

Графика
Стили в архитектуре и дизайне
Французский стиль в русской архитектуре
История дизайна
Начертательная геометрия
Комплексный чертеж
Аксонометрические проекции
Метрические задачи
Построить проекции
Машиностроительное черчение
Физика
Курсовая работа
Лабораторные работы
Молекулярная физика
Закон полного тока
Машины постоянного тока
Физическая природа проводимости
Проводниковые материалы
Полупроводниковые материалы
Расчет управляемого тиристорного выпрямителя
Классификация приборов микроволнового диапазона
Свободные носители зарядов в полупроводниках
Туннельный диод
Высокочастотные полевые транзисторы
Электромагнитное поле
Основные уравнения электродинамики
Энергия электромагнитного поля
Плоские электромагнитные волны
Диэлектрик и идеальный проводник
Элементы теории дифракции
Волны в коаксиальной линии
Математика
Пределы, функции
Вычислить интеграл
Методические указания к контрольной
Матрицы и определители
Контрольная за первый курс
Начала анализа
Теория вероятности
Теория поля
Кратные и криволинейные интегралы
Ядерная энергетика
Атомные реакторы и батареи
Лекции по радиобиологии
Основы получения ядерной энергии
Реакция деления
Плотность потока нейтронов
Скорости нейтронных реакций
Нейтронный цикл в тепловом ядерном реакторе
Реакторный теплоноситель
Уравнение возраста Ферми
Закон диффузии тепловых нейтронов
http://kursgm.ru/
Коэффициент использования тепловых нейтронов
Ячейка активной зоны реактора РБМК-1000
Меры по уменьшению неравномерности поля тепловых нейтронов.
Кинетика ядерного реактора
Запаздывающие нейтроны
Переходные процессы при сообщении реактору отрицательной реактивности
Процедура ступенчатого пуска и ядерная безопасность реактора
Коэффициент воспроизводства ядерного топлива
Стационарное отравление реактора ксеноном
Нестационарное переотравление реактора самарием
Эффективный радиус стержня-поглотителя
БОРНОЕ  РЕГУЛИРОВАНИЕ ВВЭР
РАСЧЁТНОЕ  ОБЕСПЕЧЕНИЕ ЯДЕРНОЙ БЕЗОПАСНОСТИ ВВЭР ПРИ ЕГО ЭКСПЛУАТАЦИИ
Алгоритм расчёта пусковой концентрации борной кислоты

Взаимодействие между молекулами. Потенциал взаимодействия. Силы, действующие между электрически нейтральными молекулами или атомами, называют межмолекулярными силами. По своему происхождению они имеют электрический природу и объясняются неоднородным распределением электронов внутри молекулы, что приводит к возникновению электрических дипольных моментов молекул. Электрический дипольный момент можно представить как два разноименных, но одинаковых по величине заряда, расположенных на близком расстоянии друг от друга.

Агрегатные состояния вещества. Фазовая диаграмма. Радиальная функция распределения. Известно что, любое вещество может находиться в трех агрегатных состояниях: газообразном, жидком и твердом. Под агрегатным состоянием понимают такое состояние вещества, когда оно однородно по своим физическим и химическим свойствам. Агрегатное состояние также называют фазой вещества.

Процессы перехода вещества из одного агрегатного состояния в другое называют фазовыми переходами. Эти процессы широко используются в химических технологиях. Фазовые диаграммы позволяют рассматривать особенности фазовых переходов в конкретных веществах с помощью различных процессов.

Характер теплового движения молекул в разных состояниях. Средние энергии молекул в разных фазах. Распределение молекул по скоростям. Как известно молекулы и атомы в веществе постоянно находятся в движении, которое имеет случайный, хаотический характер. Тем не менее в каждом агрегатном состоянии имеются характерные особенности этого движения, которые во многом определяют свойства различных состояний.

Диффузия. Коэффициент диффузии. Вследствие теплового движения молекул в веществе происходит диффузия. Диффузия это явление переноса вещества из одной части занимаемого им объема в другую. Это явление наиболее сильно проявляется в газах и жидкостях, в которых тепловое движение молекул особенно интенсивно и возможно на большие расстояния.

Молекулярная физика – раздел физики, в котором изучаются свойства тел в различных агрегатных состояниях на основе рассмотрения их молекулярного строения. Физические свойства макроскопических систем (т.е. систем, состоящих из очень большого числа частиц) изучаются двумя разными, но взаимно дополняющими друг друга методами – статистическим и термодинамическим.

Барометрическая формула. При выводе основного уравнения молекулярно-кинетической теории предполагалось, что если на молекулы газа не действуют внешние силы, то молекулы равномерно распределены по объему. Однако молекулы любого газа находятся в потенциальном поле тяготения Земли.

 Внутренняя энергия. Важной характеристикой любой термодинамической системы является ее внутренняя энергия – энергия хаотического теплового движения частиц системы - молекул, атомов и энергия их взаимодействия. К внутренней энергии не относится кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях.

Применение первого начала термодинамики к изопроцессам

Второе начало термодинамики. Термодинамический процесс называется обратимым, если он может происходить как в прямом, так и в обратном направлении, а в окружающей среде и в системе при этом не происходит никаких изменений. Всякий процесс, не удовлетворяющий этим условиям, является необратимым.

Диффузия. Диффузией называется явление самопроизвольного взаимного проникновения и перемешивания частиц соприкасающихся газов, жидкостей и даже твердых тел при наличии неоднородности распределения частиц разного сорта. В смесях диффузия вызывается наличием разных концентраций молекул компонентов смеси в разных частях объема

Свойства и строение жидкостей. Жидкое состояние занимает промежуточное положение между газами и твердыми телами. В расположении частиц жидкости наблюдается так называемый ближний порядок. Это означает, что по отношению к любой частице расположение ближайших к ней соседей является упорядоченным. Однако по мере удаления от данной частицы порядок в расположении частиц довольно быстро исчезает.

Структура твердых тел. В отличие от жидкостей твердые тела обладают упругостью формы. Если к твердому телу приложить внешнюю силу, то возможно изменение его формы. После снятия нагрузки тело примет первоначальный вид, если не перейден некоторый предельный уровень деформации. Наличие упругой деформации у твердых тел и отсутствие ее у жидкостей обусловлены различием в их молекулярном строении и характере теплового движения молекул. Твердые тела делятся на два типа, существенно отличающихся друг от друга по физическим свойствам: кристаллические и аморфные.

Кинетическая теория газа Основное уравнение молекулярно-кинетической теории газов для давления связывает параметры состояния идеального газа с характеристиками движения его молекул:

Лабораторная работа № 114 Определение молярной газовой постоянной методом откачки Цель работы: экспериментально определить молярную газовую постоянную.

Лабораторная работа 115 Определение средней длины свободного пробега и эффективного диаметра молекул воздуха Цель работы: определить среднюю длину свободного пробега и эффективный диаметр молекул воздуха по его коэффициенту внутреннего трения, плотности и средней квадратичной скорости молекул. 

Лабораторная работа №116. Получение и измерение вакуума Цель работы: ознакомиться с методами получения и измерения вакуума. Определить скорость откачки форвакуумного насоса.

Измерение вакуума. Под измерением вакуума понимают измерение давления разреженного газа. В зависимости от диапазонов измеряемых давлений применяют различные типы манометров. Основными из них являются жидкостные (ртутные), термоэлектрические, электроразрядные и магнитные.

Лабораторная работа 117 ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЕМКОСТЕЙ СР/СV МЕТОДОМ КЛЕМАНА – ДЕЗОРМА Идеальный газ – газ, при рассмотрении которого пренебрегают силами межмолекулярного взаимодействия и размерами молекул. Все реальные газы при достаточно высоких температурах и достаточно низких давлениях мало отличаются по своим свойствам от идеального газа, поэтому выводы, полученные для идеального газа, широко используются для решения практических задач.

Лабораторная работа 119 Определение коэффициента внутреннего трения жидкости Понятие о внутреннем трении Между движущимися слоями при движении жидкости (или газа) возникают силы трения. Со стороны слоя, движущегося более быстро, на слой, движущийся медленнее, действует ускоряющая сила. Наоборот, со стороны слоя, движущегося медленнее, на более быстрый слой действует задерживающая сила

Понятие о поверхностном натяжении жидкостей Молекулы жидкости, расположенные у ее границы, находятся в совершенно иных условиях, чем молекулы внутри жидкости. Молекула внутри жидкости находится под воздействием всех остальных молекул.

Лабораторная работа 120 Изучение термодинамики поверхностного натяжения Цель работы: определение свободной, связанной и полной энергии поверхностного слоя воды на основе измерений коэффициента поверхностного натяженияa и его зависимости от температуры .

Кратные и криволинейные интегралы