ФИЗИЧЕСКИЕ ОСНОВЫ ПОЛУЧЕНИЯ ЯДЕРНОЙ ЭНЕРГИИ

Начертательная геометрия
Комплексный чертеж
Аксонометрические проекции
Метрические задачи
Построить проекции
Машиностроительное черчение
Математика
Матрицы и определители
Начала анализа
Теория вероятности
Теория поля
Кратные и криволинейные интегралы
Ядерная энергетика
Основы получения ядерной энергии
Реакция деления
Плотность потока нейтронов
Скорости нейтронных реакций
Нейтронный цикл в тепловом ядерном реакторе
Реакторный теплоноситель
Уравнение возраста Ферми
Закон диффузии тепловых нейтронов
Коэффициент использования тепловых нейтронов
Ячейка активной зоны реактора РБМК-1000
Меры по уменьшению неравномерности поля тепловых нейтронов.
Кинетика ядерного реактора
Запаздывающие нейтроны
Переходные процессы при сообщении реактору отрицательной реактивности
Процедура ступенчатого пуска и ядерная безопасность реактора
Коэффициент воспроизводства ядерного топлива
Стационарное отравление реактора ксеноном
Нестационарное переотравление реактора самарием
Эффективный радиус стержня-поглотителя
БОРНОЕ  РЕГУЛИРОВАНИЕ ВВЭР
РАСЧЁТНОЕ  ОБЕСПЕЧЕНИЕ ЯДЕРНОЙ БЕЗОПАСНОСТИ ВВЭР ПРИ ЕГО ЭКСПЛУАТАЦИИ
Алгоритм расчёта пусковой концентрации борной кислоты

Скорости нейтронных реакций и их характеристики

  Скоростью любой нейтронной реакции на ядрах i-го компонента среды называется число актов этой реакции, ежесекундно происходящих с этими ядрами в единичном объёме (1 см3) среды.

Скорости реакций удобно обозначать символом Rji, где нижний индекс (j) указывает на тип нейтронной реакции, а верхний - (i) - служит условным обозначением нуклида, изотопа, химического элемента или соединения (или даже их смеси), или, наконец, сложного материала, на ядрах которого происходит рассматриваемая нейтронная реакция.

Если на месте нижнего индекса j в символе Rji стоит:

- c - речь идёт о реакции радиационного захвата (с - первая буква английского слова capture - радиационный захват);

- f - речь о реакции деления (fission - деление);

- a - речь о реакции поглощения (absorption - поглощение);

*) Понятие поглощения нейтронов объединяет два процесса, влекущих потерю исходного нейтрона: радиационный захват и деление, - в отличие от реакции рассеяния, после которой исходный нейтрон компенсируется новым нейтроном, испускаемым ядром. Логика проста: поглощение нейтрона ядром в общем случае может закончиться либо непроизводительным радиационным захватом, либо делением этого ядра.

- s - значит имеется в виду скорость реакции рассеяния (scattering – рассеяние); в частности нижний индекс рассеяния может быть более уточняющим: se - обозначает упругое рассеяние (scattering elastic), а si - неупругое рассеяние (scattering inelastic - рассеяние неупругое).

Верхним индексом (i) может быть условная цифра (как правило, последняя цифра массового числа изотопа элемента), либо химический символ элемента, либо, наконец, любой символ для краткого обозначения материала, вещества или сложной среды, который можно придумать на ходу, оговорив его использование во избежание путаницы. Например:

- Rf5 - скорость реакции деления ядер 235U;

- Ra9 - скорость поглощения нейтронов ядрами 239Pu;

- Rc8 - скорость радиационного захвата нейтронов ядрами 238U;

- RaXe- скорость поглощения нейтронов ядрами ксенона;

- RsBe- скорость рассеяния нейтронов ядрами бериллия;

- RseC- скорость упругих рассеяний нейтронов ядрами углерода;

- Rsiст- скорость неупругих рассеяний нейтронов в конструкционной стали и т.п.

Размерность скоростей нейтронных реакций - акт/см3с или формально - см-3с-1.

Факторы, определяющие величину скорости нейтронных реакций. Из нейтронной физики известно выражение для скорости любой реакции под действием моноэнергетических нейтронов с энергией Е или соответствующей ей скорости v:

  Rji(E) = sji(E) .Ni . n(E) . v(E), (2.4.1)

 где: - Ni, см-3 - ядерная концентрация i-го компонента в среде;

 - n(Е), см-3 - плотность нейтронов с энергией Е;

v(E), см/с - скорость нейтронов при их кинетической энергии Е, то есть:

 v(E) = (2E/mn)1/2 =. (2.4.2)

Коэффициент пропорциональности s между характеристикой среды (Ni), характеристиками нейтронного поля (n и v) и скоростью j-ой нейтронной реакции (R) имеет размерность см2, что дало повод назвать его эффективным микросечением i-го нуклида по отношению к j-ой реакции.

Принцип индексации в обозначениях микросечений - тот же, что и у скоростей нейтронных реакций - sji, например:

- sa5 - микросечение поглощения ядер 235U;

- sf9 - микросечение деления ядер 239U;

- ssС - микросечение рассеяния углерода С;

- scXe - микросечение радиационного захвата ксенона и т.п.

Величина произведения:  Sji = sji . N i, (2.4.3)

имеющая размерность см-1, называется эффективным макросечением вещества по отношению к рассматриваемой (j-ой) нейтронной реакции.

Название s сечением изначально рождено благодаря размерности этой величины из представлений о взаимодействии коллинеарного пучка моноэнергетических нейтронов с перпендикулярно расположенной к этому пучку тонкой плоской мишенью. То есть формула (2.4.1) по трактовке физического смысла размерности s фактически базируется на идеализированных представлениях: ни коллинеарных, ни моноэнергетических пучков нейтронов в Природе не существует.

Попытаемся составить представление о микро- и макросечениях исходя из самых общих понятий.

Вообразим единичный (1см3) объём среды, в котором находятся Ni ядер и n хаотически движущихся по всем направлениям со скоростью v см/с нейтронов.

В результате взаимодействий нейтронов этой скорости (кинетической энергии) в 1 см3 ежесекундно происходит Rji актов реакции j-го типа:

 Rji = sji . Ni . n . v.

Величина nv = Ф - есть плотность потока нейтронов с энергией Е (или соответствующей ей скоростью нейтронов v), поэтому

 Rji(E) = sji(E) . Ni . Ф(E). (2.4.4)

Величина скорости реакции Rji имеет размерность 1/см3с или иначе (1/с): см3, то есть, по существу, - это размерность частоты, отнесенная к размерности объёма. Действительно, скорость нейтронной реакции Rji, при самом взыскательном подходе, есть не что иное, как частота следования во времени отдельных актов нейтронной реакции в единичном объёме среды.

Тогда величина Rji/Ф = Sji c размерностью см-1 - это частота j-ой реакции, возбуждаемая на ядрах единичного объёма среды потоком нейтронов единичной плотности (Ф = 1 нейтр/см2с).

  Эффективное макросечение j-ой нейтронной реакции на ядрах рассматриваемого вещества - есть частота этой реакции, возбуждаемая на ядрах единичного объёма вещества потоком нейтронов единичной плотности.

Величина же sji = Sji/Ni = (Rji/Ф)/Ni - это частота j-ой реакции, возбуждаемая потоком нейтронов единичной плотности и приходящаяся на объём среды, содержащий одно ядро, поскольку, если разделить единичный объём вещества на количество содержащихся в нём ядер Ni, то в результате получается величина объёма среды, относимая к одному ядру.

А так как единичную плотность потока нейтронов (Ф = 1 нейтр/см2с) при дискретном отношении к нейтрону нельзя себе представить иначе, как 1 нейтрон в единичном объёме, движущийся с единичной (1 см/с) скоростью, то можно дать такое общее определение микросечения:

 Эффективное микросечение i-ых ядер - это частота рассматриваемой реакции, возбуждаемая потоком нейтронов единичной плотности в объеме среды, содержащем одно i-ое ядро.

 Аналогично:

  Эффективное макросечение ВЕЩЕСТВА - это частота рассматриваемой

 реакции, возбуждаемая потоком нейтронов единичной плотности в единичном объеме вещества, содержащим все рассматриваемые ядра.

Принципиальная разница понятий микро- и макросечения состоит не только в различии размерностей, но и в том, что микросечение - характеристика одиночного нуклида, а макросечение - характеристика целого вещества, которое может состоять из одного или нескольких нуклидов.

Из интерпретации плотности потока нейтронов Ф как суммарного пробега n нейтронов в 1 см3 за 1 с и формулы Rji = SjiФ следует другая интерпретация макросечения. Если Ф = nv - суммарный секундный путь n нейтронов, движущихся со скоростью v см/с в единичном объёме, а секундное количество актов рассматриваемой (j-ой) реакции в этом же единичном объёме равно Rji = SjiФ, то каждый акт рассматриваемой реакции происходит в среднем по прохождении нейтронами этого единичного объёма некоторого среднего пробега, равного:

 lji = Ф/Rji = Ф/SjiФ = 1/Sji. (2.4.5)

То есть макросечение вещества Sji = 1/lji - есть величина, обратная среднему свободному пробегу моноэнергетических нейтронов в единичном объёме этого вещества за время между двумя непосредственно следующими друг за другом во времени актами рассматриваемой реакции.

Величина lji не изменится, если построить вышеприведенные рассуждения на единичной плотности нейтронов, то есть считать, что в единичном объеме среды движется только 1 нейтрон со скоростью v см/с. В этом случае Ф = 1 . v, но эта величина, стоящая в числителе и знаменателе выражения (2.4.5), сократится. Следовательно:

Макросечение вещества по отношению к j-ой нейтронной реакции - это величина, обратная средней длине пробега свободного нейтрона в веществе до возникновения этой реакции.

Длины свободного пробега нейтронов в веществах (lji) индексируются точно так же, как и макросечения, например:

- lsC - длина свободного пробега между рассеяниями в графите;

- lacт- длина свободного пробега до поглощения в стали;

- lf5 - длина свободного пробега до деления в уране-235;

- lcCd - длина свободного пробега до радиозахвата в кадмии и т.п.

 *) Часто названия этих длин сокращают до: "длина пробега до поглощения" или "пробег до поглощения".

Ядерная энергетика Кинетика ядерного реактора