ФИЗИЧЕСКИЕ ОСНОВЫ ПОЛУЧЕНИЯ ЯДЕРНОЙ ЭНЕРГИИ

Уравнение возраста Ферми и его решение

Плотность замедления нейтронов. В каждом кубическом сантиметре объёма активной зоны реактора движутся большие количества нейтронов самых различных энергий. И мысленный "моментальный снимок" движущихся в единичном объёме среды по разным направлениям и с различными скоростями нейтронов способен вызвать ощущение хаоса, лишенного каких-либо закономерностей.

Но, поскольку движением нейтронов управляет Её Величество Среда, управляет в силу присущих ей природных (= физических, точнее, замедляющих) свойств, какая-то закономерность пространственно-энергетического распределения замедляющихся нейтронов в зависимости от замедляющих свойств среды должна быть. Одну из таких закономерностей (скорее всего, наиболее важную) описывает уравнение возраста Ферми.

Но прежде чем знакомиться с самим этим уравнением, рассмотрим одну из характеристик, фигурирующих в нём - с плотностью замедления нейтронов.

Плотность замедления q(E) нейтронов при данной энергии Е называется число нейтронов, ежесекундно пересекающих в процессе замедления в единичном объёме среды данный уровень энергии Е.

 В соответствии с определением размерность q(E) - нейтр/см3с.

 Чем должна определяться величина q(E) в реакторе?

- Во-первых, q(E) - величина локальная, поскольку трудно ожидать, чтобы в разных микрообъёмах активной зоны реакция деления шла с одинаковой скоростью, а, значит, и нейтроны деления рождались бы с одинаковой скоростью. Известный нам процесс утечки нейтронов, идущий, главным образом, из периферийных слоев активной зоны, конечно же, должен уменьшать плотность нейтронов любой энергии в периферийных объёмах активной зоны, и, значит, плотность нейтронов любой энергии в центральной области активной зоны должна быть выше, а на её периферии - ниже. Неравномерность распределения плотности нейтронов в объёме активной зоны должна порождать неравномерность скоростей генерации нейтронов деления, а последняя должна неизбежно порождать неравномерность распределения величины плотности замедления нейтронов в объёме активной зоны.

Иначе говоря, величина плотности замедления q(E) является функцией координат точек активной зоны, то есть q = f(E,r), имея в виду под r(x,y,z) краткое обозначение радиус-вектора точки активной зоны с указанными координатами.

- Во-вторых, плотность замедления должна зависеть от замедляющих свойств среды активной зоны, а, значит, - от какой-то из характеристик замедляющих свойств этой среды. Возраст нейтронов с энергией Е оказался наиболее подходящей из всех известных нам характеристик замедляющих свойств: в среде конкретного состава возраст t однозначно связан с энергией нейтронов Е, и каждому определённому значению энергии Е замедляющихся нейтронов в среде соответствует своё определенное значение возраста t(E) = ln(Eo/E)/3xSsStr.

Вот почему зависимость плотности замедления от координат, замедляющих свойств среды и энергии нейтронов можно записать более ёмко: q(r, E) = f (r, t).

Ради лучшего понимания сущности величины плотности замедления полезно задуматься о двух "крайних" частностях этой величины.

Первая: плотность замедления в начале процесса замедления, то есть при Е = Ео = 2 МэВ, при средней энергии, с которой рождаются нейтроны в реакторе, и с которой они начинают замедляться. Если обозначить величину плотности замедления при Ео через qf, то эта величина в реакторе с полным основанием может быть названа скоростью генерации нейтронов деления, так как ясно: сколько нейтронов деления рождается ежесекундно в единичном объёме активной зоны - столько же их без задержки начинает процесс замедления в этом объёме, немедленно пересекая уровень энергии Ео.

 Итак, qf = q(Eo) - это скорость генерации нейтронов деления.

Вторая частность: плотность замедления в конце процесса замедления нейтронов в активной зоне, т.е. при энергии Е = Ес. Эта величина может быть названа скоростью генерации тепловых нейтронов: сколько нейтронов пересекают ежесекундно в единичной объёме активной зоны уровень энергии Ес, - столько же их ежесекундно в этом единичном объёме становятся тепловыми нейтронами.

Итак, qт = q(Ec) - это скорость генерации тепловых нейтронов.

В общем же случае, в интервале энергий замедления Ес < E < Eo величина плотности замедления q = q(r,t), разумеется, отлична от qf и от qт.

Уравнение возраста Ферми. При рассмотрении нейтронного цикла отмечалось, что подавляющее большинство веществ очень слабо поглощают эпитепловые нейтроны, и исключение из правила составляют резонансные захватчики замедляющихся нейтронов, среди которых выделяется 238U - обязательный компонент топлива активных зон большинства тепловых реакторов. Поэтому особенностью процесса реального замедления нейтронов в активных зонах сравнительно с замедлением в идеальных, не поглощающих замедляющиеся нейтроны, средах является непрерывное уменьшение количества замедляющихся нейтронов за счёт их резонансного захвата в процессе замедления.

Поэтому плотность замедления нейтронов любой энергии Е диапазона замедления в реальной активной зоне обязательно должна быть меньше, чем плотность замедления в той же активной зоне, лишённой резонансных захватчиков.

Это в большей степени существенно для гомогенного реактора, в котором все компоненты активной зоны (включая и резонансных захватчиков) равномерно распределены в активной зоне. Гетерогенного реактора это касается несколько меньше, так как подавляющее большинство нейтронов проходят процесс замедления в замедлителе - среде, почти не поглощающей эпитепловые нейтроны и расположенной отдельно от топливной композиции, в объёме которой содержится резонансный захватчик.

Относительно слабое поглощение эпитепловых нейтронов большинством материалов активной зоны в теории тепловых реакторов породило так называемое одногрупповое возрастное приближение, основная суть которого состоит в следующем:

- поглощение эпитепловых нейтронов считается не влияющим на процесс их замедления, то есть замедление в реальной активной зоне подчинено тем же закономерностям, что и в идеальной непоглощающей среде;

- снижение величины реальной плотности замедления в конце процесса замедления (qт) по сравнению с величиной плотности замедления в той же, но не поглощающей эпитепловые нейтроны среде (qт*) можно учесть с помощью известного нам коэффициента j - вероятности избежания резонансного захвата в активной зоне реактора:

 qт = qт*j  (5.4.1)

Именно для непоглощающих эпитепловые нейтроны сред справедливо уравнение возраста Ферми:

  (5.4.2)

Левая часть уравнения - производная функции плотности замедления по величине возраста нейтронов, а так как возраст нейтронов в конкретной среде однозначно связан с уровнем энергии замедляющихся нейтронов, то эта величина несет в себе неявный смысл скорости изменения плотности замедления по энергиям нейтронов.

Правая часть - оператор Лапласа от функции плотности замедления, то есть сумма вторых частных производных плотности замедления по координатам активной зоны.

В целом решение уравнения возраста для активной зоны конкретных геометрии и состава даёт функцию пространственного (то есть по координатам) и энергетического (то есть по возрастам, а значит - и по энергиям) распределения замедляющихся нейтронов в активной зоне в зависимости от замедляющих свойств среды активной зоны (которые, как мы видели ранее, скрыты в величине возраста). Возраст нейтронов t фигурирует в уравнении Ферми в качестве сложной переменной.

Ядерная энергетика Кинетика ядерного реактора