ФИЗИЧЕСКИЕ ОСНОВЫ ПОЛУЧЕНИЯ ЯДЕРНОЙ ЭНЕРГИИ

Начертательная геометрия
Комплексный чертеж
Аксонометрические проекции
Метрические задачи
Построить проекции
Машиностроительное черчение
Математика
Матрицы и определители
Начала анализа
Теория вероятности
Теория поля
Кратные и криволинейные интегралы
Ядерная энергетика
Основы получения ядерной энергии
Реакция деления
Плотность потока нейтронов
Скорости нейтронных реакций
Нейтронный цикл в тепловом ядерном реакторе
Реакторный теплоноситель
Уравнение возраста Ферми
Закон диффузии тепловых нейтронов
Коэффициент использования тепловых нейтронов
Ячейка активной зоны реактора РБМК-1000
Меры по уменьшению неравномерности поля тепловых нейтронов.
Кинетика ядерного реактора
Запаздывающие нейтроны
Переходные процессы при сообщении реактору отрицательной реактивности
Процедура ступенчатого пуска и ядерная безопасность реактора
Коэффициент воспроизводства ядерного топлива
Стационарное отравление реактора ксеноном
Нестационарное переотравление реактора самарием
Эффективный радиус стержня-поглотителя
БОРНОЕ  РЕГУЛИРОВАНИЕ ВВЭР
РАСЧЁТНОЕ  ОБЕСПЕЧЕНИЕ ЯДЕРНОЙ БЕЗОПАСНОСТИ ВВЭР ПРИ ЕГО ЭКСПЛУАТАЦИИ
Алгоритм расчёта пусковой концентрации борной кислоты

Реакция деления. Третий способ выхода возбуждённого составного ядра в более устойчивые образования - деление его на две, три или даже более протонно-нейтронных комбинации, называемые осколками деления.

В отличие от реакций радиационного захвата и рассеяния, к делению склонны далеко не все известные ядра, а лишь некоторые (главным образом, чётно-нечётные) ядра тяжёлых элементов. Вот некоторые из них:

 233U, 235U, 239Pu, 241Pu, 251Cf, ...

Наиболее важным из перечисленных нуклидов является уран-235 - основное топливо большинства существующих ядерных реакторов. Уран-235 делится нейтронами любых кинетических энергий, но лучше всего – нейтронами с малыми энергиями.

Вторым по значимости делящимся нуклидом является плутоний-239 - вторичное топливо в урановых реакторах, воспроизводящееся в процессе их работы. Как и уран-235, плутоний-239 делится нейтронами любых кинетических энергий, но наиболее эффективно – тепловыми нейтронами.

Третьим по значению делящимся нуклидом является чётно-чётный изотоп урана - уран-238 (238U). Чётное число нейтронов в его ядре даёт более устойчивую комбинацию, чем нечётное их число, благодаря чему деление урана-238 имеет пороговый характер: для инициации деления ядер 238U годны не любые нейтроны, а лишь нейтроны с энергиями выше Еп = 1.1 МэВ. (Говорят: Eп = 1.1 МэВ - энергетический порог деления ядер урана-238).

Казалось бы: стоит ли обращать серьезное внимание на уран-238? - Стройте себе реакторы с ураном-235 в качестве топлива, раз он такой хороший! Но:

- во-первых, урана-238 в Природе больше всего: природная смесь изотопов урана содержит в себе 99.28% урана-238 и лишь 0.71% урана-235; операции разделения изотопов с целью получения чистого или высокообогащенного урана-235 весьма энергоёмки, а потому экономически невыгодны; уже по этой причине следует задуматься над тем, что следует "сжигать" в реакторах в первую очередь - уран-235 или уран-238?

- во-вторых, уран-238 как раз и является тем исходным сырьевым нуклидом, из которого в работающем реакторе воспроизводится вторичное топливо - плутоний-239; это побуждает не просто терпимо относиться к неизбежному присутствию в реакторе урана-238, но и думать о том, как организовать в реакторе процесс наиболее эффективного превращения урана-238 в плутоний-239 с целью получения и использования для получения энергии наибольшего количества последнего.

Реакция деления, разумеется, является самой важной и практически значимой из трёх упомянутых выше нейтронных реакций. Ядерный реактор, по существу, конструируется и строится ради осуществления самоподдерживающейся цепной реакции деления требуемой интенсивности, а реакции радиационного захвата и рассеяния оказываются либо вынужденно необходимыми, либо просто неизбежными, идущими параллельно и одновременно с реакцией деления, сопутствующими ей.

Особая роль реакции деления в ядерном реакторе побуждает к более детальному рассмотрению её особенностей. Но прежде, чем сделать это, упомянем ещё о некоторых видах нейтронных реакций, сопровождающих работу ядерного реактора, но не имеющих принципиального значения.

Ещё три нейтронные реакции. Во-первых, это реакция типа (n,p) - то есть нейтронная реакция, завершающаяся испусканием протона.

 Образование возбуждённого 

 Ядро составного ядра массы (А+1) а.е.м. 

 Нейтрон массы А а.е.м

 и зарядом z

    Ядро массы А а.е.м. и зарядом (z-1)

 

 

 

 Захват нейтрона ядром Испускание протона

Рис.2.3. Схематическое представление о реакции типа (n,p).

В результате этой реакции образуется изобара исходного ядра, поскольку протон уносит один элементарный заряд, а масса ядра практически не меняется (нейтрон привнесён, а равный ему по массе протон - унесён).

Во-вторых, это реакция типа (n,a) - то есть реакция, завершающаяся испусканием возбужденным составным ядром a-частицы (лишённого электронной оболочки ядра атома гелия 4He), в результате которой массовое число результирующего ядра снижается на 3 а.е.м. сравнительно с массой исходного ядра, а протонный заряд уменьшается на 2 единицы.

 Образование возбуждённого 

 Ядро составного ядра массы (А+1) а.е.м. 

 Нейтрон массы А а.е.м

 и зарядом z

    Ядро массы (А-3) а.е.м. и зарядом (z-2)

 

 

 

 Захват нейтрона ядром Испускание a-частицы

 Рис.2.4. Схематическое представление о реакции типа (n,a).

И, наконец, это реакция типа (n,2n) - то есть реакция с испусканием возбуждённым составным ядром двух нейтронов, в результате которой образуется изотоп исходного элемента, на единицу меньшей массы сравнительно с массой исходного ядра.

 Образование возбуждённого 

 Ядро составного ядра массы (А+1) а.е.м. 

 Нейтрон массы А а.е.м

 и зарядом z

    Ядро массы (А-1) а.е.м. и зарядом z

 

 

 

 Захват нейтрона ядром Испускание двух нейтронов

Рис.2.5. Схематическое представление о реакции типа (n,2n).

Все три упомянутых реакции свойственны лишь очень немногим ядрам при их взаимодействии с нейтронами высоких кинетических энергий. В ядерных реакторах эти типы нейтронных взаимодействий относительно редки и принципиального влияния на работу реактора не оказывают. Упомянуты они здесь лишь потому, что используются в плутоний-бериллиевых и полоний-бериллиевых искусственных источниках нейтронов, о необходимости которых будет сказано при изучении кинетики ядерных реакторов.

Ядерная энергетика Кинетика ядерного реактора