ФИЗИЧЕСКИЕ ОСНОВЫ ПОЛУЧЕНИЯ ЯДЕРНОЙ ЭНЕРГИИ

Стационарное отравление реактора ксеноном.

Суть стационарного отравления реактора ксеноном. В первоначальный момент работы на мощности реактор, как правило, разотравлен, то есть концентрации йода и ксенона в его твэлах - нулевые. Но при работе реактора концентрации того и другого начинают расти, и несложно представить себе, до какого уровня они будут расти. Поскольку скорость убыли ксенона прямо пропорциональна величине его концентрации (взгляните на последние два слагаемых (19.1.1)), то какой бы ни был характер его образования, рано или поздно количество накопленного ксенона достигнет такой величины, что скорость его убыли сравняется со скоростью его образования. В этом случае концентрация накопленного ксенона должна стабилизироваться по величине (то есть достигнуть стационарного значения). И очевидно, что для достижения этого состояния реактор должен работать на постоянном уровне мощности и проработать на этом уровне мощности достаточно длительное время. Какое именно - увидим далее.

Стационарным называется отравление, свойственное реактору, длительно работающему на постоянном уровне мощности, в результате чего в его твэлах устанавливаются постоянные во времени концентрации йода и ксенона.

Таким образом, условиями стационарности отравления реактора 135Хе являются:

 а) Ф(t) = idem = Фо, б) Nxe(t) = idem = Nxeст, в) NJ(t) = NJст, (19.2.1)

 причём, последние два условия равносильны условиям:

  (19.2.2)

19.2.2. Величина стационарного отравления ксеноном. Если подставить условия (19.2.1) и (19.2.2) в дифференциальные уравнения отравления реактора (19.1.1)-(19.1.2), последние перестают быть дифференциальными, становясь обычными алгебраическими линейными уравнениями:

  (19.2.3)

  (19.2.4)

Из уравнения (19.2.4) находится величина стационарной концентрации 135I:

 . (19.2.5)

Отметим на будущее: величина стационарной концентрации йода-135 прямо пропорциональна величине уровня мощности, на котором работает реактор (так как величина концентрации 235U в течение нескольких суток работы реактора на постоянной мощности уменьшается незначительно, величина мощности реактора оказывается пропорциональной величине плотности потока нейтронов в твэлах реактора Фо).

Величину стационарной концентрации ксенона проще всего найти, если почленно сложить уравнения (19.2.3) и (19.2.4):

 , откуда следует, что:

  (19.2.6)

И, следовательно, величина потерь реактивности при стационарном отравлении реактора ксеноном (в соответствии с формулой (19.2)):

  (19.2.7)

Следовательно, потери запаса реактивности при стационарном отравлении реактора ксеноном определяются:

а) Величиной концентрации урана-235 (или величиной обогащения топлива) - в той мере, в какой эта величина определяет величину коэффициента использования тепловых нейтронов q : чем больше концентрация N5 - тем больше величина q - и тем, следовательно, больше будет абсолютная величина потерь реактивности при стационарном отравлении rXeст.

б) Величиной уровня мощности, на котором длительно работает реактор Np0 (которая в течение относительно непродолжительного времени отравления прямо пропорциональна величине плотности потока тепловых нейтронов в топливе реактора Фо). Эта зависимость отравления реактора от его мощности настолько важна для эксплуатационника, что есть смысл остановиться на ней подробнее.

Зависимость стационарного отравления ксеноном от мощности реактора. Если подставить в формулу (19.2.7) значения всех известных физических констант, а именно: saXe = 2.72.10 -18 см2, sa5 = 680.9 барн, sf5 = 582.3 барн, gI = 0.06, gXe = 0.003 и lXe = 2.1 10-5 c-1, то выражение для rXeст примет более простой вид:

  (19.2.7a)

 Небольшой расчёт по этой формуле позволяет убедиться, что:

при Фо < 1011 нейтр/см2с (такие плотности потока свойственны реактору, работающему на МКУМ) отравление реактора практически отсутствует (rXeст » 0);

при Фо > 5 . 1014 нейтр/cм2с (а такие величины Ф свойственны только импульсным экспериментальным реакторам) величина стационарного отравления практически достигает своего теоретического предела (rXeст)пред » - 0.054 q = - 5.4 q %.

В интервале промежуточных значений Фо (1011ё1014 нейтр/см2с) - свойственных энергетическим  реакторам АЭС - зависимость величины стационарного отравления от величины плотности потока нейтронов в твэлах реактора имеет нелинейно возрастающий характер, причём, по мере роста величины плотности потока нейтронов темп роста стационарного отравления реактора ксеноном монотонно падает до нуля (при приближении к величине теоретического предела отравления).

 -rХест /q 

 0.06 

 Теоретический предел величины стационарного отравления реакторов

 0.054

 0.04

  0.02 

 

 1010 1011 1012 1013 1014 1015 Фо, см-2 с-1 

Рис.19.3. Качественный вид зависимости величины стационарного отравления реакторов ксеноном

от величины средней плотности потока тепловых нейтронов в топливе твэлов.

Эксплуатационника в большей степени интересует не эта зависимость, имеющая, скорее, академический характер, а практическое приложение её к конкретному реактору, которым он управляет.

Но вы, конечно, понимаете, что в любом конкретном реакторе каждому значению мощности реактора соответствует своё значение средней плотности потока тепловых нейтронов, и в любой момент кампании это соответствие - однозначное. А это значит, что участок теоретической кривой, показанной на рис.19.3, можно пересчитать (и перестроить) в график зависимости стационарного отравления конкретного реактора от его уровней мощности (рис.19.4). Этот график эксплуатационники кратко называют кривой стационарных отравлений. Обычно он строится в натуральном масштабе, то есть величина мощности реактора выражается либо абсолютно (в МВт), либо в относительных единицах (чаще всего в процентах от номинальной мощности реактора).

 Кривая стационарных отравлений, построенная в удобном масштабе, позволяет быстро оценивать величину потерь реактивности реактора вследствие стационарного отравления ксеноном на любом уровне мощности.

 

 0 10 20 30 40 50 60 70 80 90 Np, %Nном

 

 

 Рис.19.4. Типичный качественный вид кривой стационарных отравлений реактора.

 19.2.4. Характер роста потерь запаса реактивности из-за отравления 135Xe первоначально разотравленного реактора в первый период работы на постоянном уровне мощности. Если реактор запускается после достаточно длительной стоянки и работает на постоянном уровне мощности, то величина потерь реактивности с момента начала работы на мощности от нуля через некоторый отрезок времени в соответствии со всем сказанным ранее должна достигнуть стационарного уровня. Практика должны заинтересовать, по крайней мере, два вопроса: каков характер роста потерь реактивности до достижения уровня стационарного отравления и за какое время работающий на постоянном уровне мощности реактор достигает стационарного отравления?

Характер роста потерь реактивности при выходе реактора на стационарное отравление выясняется из решения системы дифференциальных уравнений отравления реактора при нулевых начальных условиях и условии Ф(t) = idem = Фо. Решение уравнений и переход от концентраций Nxe(t) к потерям реактивности за счёт отравления ксеноном даёт следующее выражение для переходного процесса rXe(t):

 

  (19.2.8)

Формула (19.2.8), если мысленно подставить в неё все нейтронно-физические константы, обретает существенно более простой вид, который подсказывает, что текущие величины отравлений реактора ксеноном не линейно зависят от уровня мощности реактора (или Фо). Расчёт по этой формуле для различных величин Фо (в том числе и для Фо = Ґ)) качественно иллюстрируется графиком, представленным на рис.19.5. Из него следует, что при малых значениях плотности потока тепловых нейтронов (или на малых уровнях мощности реактора) переходный процесс rXe(t) протекает в несколько более замедленном темпе, чем при больших значениях Фо (на больших уровнях мощности). Предельный случай этих переходных процессов (при Фо ® Ґ) вырождается в одну экспоненту:

 , (19.2.9)

поскольку при Фо® Ґ первая из экспонент формулы (19.2.8) обращается в нуль, а коэффициент перед второй экспонентой - в единицу

 1.0

 

  0.5 

 

 0 10 20 30 40 50 t, час

Рис.19.5. Переходные процессы  нестационарного выхода первоначально разотравленного 

реактора на стационарный  уровень отравления. Нижняя кривая соответствует Фо = 20% Фоном,

средняя кривая – 100% Фоном, верхняя – Фо = ¥.

Факт не очень существенной зависимости переходных процессов rXe(t) от плотности потока нейтронов (практически - от мощности реактора) даёт возможность с достаточной для практических целей точностью приближенно оценивать величины текущих значений отравления реактора ксеноном по формуле (19.2.9):

  ,

справедливой, строго говоря, только для идеального случая бесконечно больших мощностей реактора.

Ядерная энергетика Кинетика ядерного реактора