Кинетика ядерного реактора

Кинетика реактора - раздел теории реакторов, объясняющий и описывающий закономерности поведения реактора при ненулевых реактивностях. Имеются в виду закономерности переходных процессов изменений величины плотности потока тепловых нейтронов в активной зоне реактора во времени, поскольку эта величина пропорциональна мощности реактора, то есть той самой величине, контролем и управлением которой призван заниматься оператор реакторной установки.

ЭЛЕМЕНТАРНАЯ КИНЕТИКА ТЕПЛОВОГО РЕАКТОРА Попробуем вначале описать переходный процесс изменений во времени величины средней по объёму активной зоны плотности тепловых нейтронов  реактора при сообщении первоначально критическому реактору реактивности, опираясь только на то, что мы уже знаем о реакторе из предыдущих тем.

Запаздывающие нейтроны шести усреднённых групп отличаются друг от друга по нескольким параметрам

Среднее время жизни поколения нейтронов в тепловом реакторе Среднее время жизни мгновенных нейтронов. В соответствии с нашими представлениями о физических процессах, в которых участвуют все мгновенные нейтроны, время жизни “среднестатистического” теплового нейтрона, рождаемого в результате замедления мгновенного нейтрона, состоит из трёх слагаемых - следующих друг за другом времени деления, времени замедления и времени диффузии.

КИНЕТИКА  РЕАКТОРА С УЧЁТОМ ЗАПАЗДЫВАЮЩИХ НЕЙТРОНОВ Здесь, как и в предыдущей теме, будет рассматриваться кинетика «холодного» реактора в точечно-параметрическом приближении. Как и ранее, оговариваемся, что в рамках нашего рассмотрения величина положительной или отрицательной реактивности первоначально критическому реактору сообщается самым простым и жёстким образом - мгновенным скачком

Дифференциальные уравнения скоростей изменения эффективных концентраций предшественников запаздывающих нейтронов шести групп

Переходные процессы при сообщении реактору отрицательной реактивности

Переходные процессы при сообщении реактору положительных реактивностей

Если требуется увеличить уровень мощности реактора, первоначально работавшего в критическом режиме на малом уровне мощности Nр1, оператор должен сообщить реактору некоторую величину положительной реактивности, для чего достаточно переместить из критического положения на некоторое расстояние вверх любой стержень-поглотитель (или группу поглотителей).

ОСНОВЫ КИНЕТИКИ ПОДКРИТИЧЕСКОГО РЕАКТОРА ПРИ ЕГО ПУСКЕ При бездействии энергетический реактор хранится в подкритическом состоянии. Реактору энергоблока АЭС, вообще говоря, состояние бездействия не свойственно; это, скорее, вынужденное состояние после срабатывания аварийной защиты реактора по серьёзным причинам, требующим значительного времени для их устранения, или плановая остановка реактора для перегрузки его активной зоны.

Переходные процессы при изменениях степени подкритичности реактора Принципиально нам уже понятно, что переходный процесс в подкритическом реакторе при изменении степени подкритичности реактора от одного значения до другого должен быть процессом перехода  величины плотности нейтронов n(t) от одного установившегося значения n1, соответствующего начальной степени подкритичности dkп1 до другого установившегося значения n2, соответствующего другому значению степени подкритичности dkп2. Поэтому единственное, что нас интересует сейчас, это характер этого переходного процесса, то есть ответ на вопрос, какой математической закономерности подчиняется переходный процесс.

Процедура ступенчатого пуска и ядерная безопасность реактора Факт, что время стабилизации плотности нейтронов в подкритическом реакторе увеличивается по мере приближения реактора к критичности, накладывает свой отпечаток на организацию процедуры пуска реактора, в особенности, если начальная стадия подъёма органов компенсации реактивности из-за ограниченной чувствительности пусковой аппаратуры контроля нейтронного потока в реакторе выполняется “вслепую”.

ИЗМЕНЕНИЯ ЗАПАСА РЕАКТИВНОСТИ ПРИ РАБОТЕ РЕАКТОРА ПОНЯТИЯ ОБЩЕГО И ОПЕРАТИВНОГО ЗАПАСА РЕАКТИВНОСТИ РЕАКТОРА Энергетический ядерный реактор создаётся для работы на расчётной (номинальной) мощности в течение довольно длительного времени, называемого кампанией активной зоны реактора. Это означает тривиальную истину: в течение всей кампании реактор должен оставаться критичным. Попробуйте представить себе, как создаётся первое критическое состояние реактора: активную зону реактора постепенно заполняют тепловыделяющими сборками до тех пор, пока в ней не начнётся самоподдерживающаяся цепная реакция деления. В этом случае говорят, что в активной зоне набрана первая критическая масса.

УМЕНЬШЕНИЕ ЗАПАСА РЕАКТИВНОСТИ С ВЫГОРАНИЕМ ЯДЕРНОГО ТОПЛИВА Выгорание - процесс непрерывной убыли в работающем реакторе делящихся нуклидов, обусловленный поглощением ими нейтронов реакторного спектра.

УМЕНЬШЕНИЕ ЗАПАСА РЕАКТИВНОСТИ ЗА СЧЁТ ШЛАКОВАНИЯ ЯДЕРНОГО ТОПЛИВА Шлакование топлива - это процесс накопления в работающем реакторе стабильных и долгоживущих продуктов деления, участвующих в непроизводительном захвате тепловых нейтронов и, тем самым, понижающих запас реактивности реактора.

РОСТ  ЗАПАСА РЕАКТИВНОСТИ С ВОСПРОИЗВОДСТВОМ ЯДЕРНОГО ТОПЛИВА Воспроизводство ядерного топлива - это процесс накопления в работающем реакторе новых делящихся нуклидов, участвующих вместе с основным топливом (ураном-235) в реакции деления, и, тем самым, повышающих величину запаса реактивности реактора.

Коэффициент воспроизводства ядерного топлива Поскольку воспроизводимое топливо сразу же включается в общий цикл размножения, давая свой вклад в деления и выработку энергии реактора, практику безусловно интересно знать, какая часть общего количества энергии будет вырабатываться за счёт воспроизводимого плутония, а это связано с тем, сколько ядер плутония получается при затрате одного ядра основного топлива.

ИСПОЛЬЗОВАНИЕ  ВЫГОРАЮЩИХ ПОГЛОТИТЕЛЕЙ Выгорающие поглотители - это поглотители с высоким сечением захвата тепловых нейтронов, неподвижно размещаемые в активной зоне и медленно уничтожаемые при работе реактора за счёт поглощения ими нейтронов, из-за чего на их месте образуются продукты с существенно меньшими сечениями поглощения, что приводит к уменьшению поглощающих свойств активной зоны и высвобождению запаса реактивности.

ОТРАВЛЕНИЕ РЕАКТОРА КСЕНОНОМ Отравление реактора - это процесс накопления в нём короткоживущих продуктов деления, участвующих в непроизводительном захвате нейтронов и тем самым снижающих запас реактивности реактора при их образовании и, наоборот, высвобождающих его при их b-распаде.

Стационарное отравление реактора ксеноном. Суть стационарного отравления реактора ксеноном.  В первоначальный момент работы на мощности реактор, как правило, разотравлен, то есть концентрации йода и ксенона в его твэлах - нулевые. Но при работе реактора концентрации того и другого начинают расти, и несложно представить себе, до какого уровня они будут расти.

Время наступления стационарного отравления реактора. Экспонента, какая бы сложная она ни была, - кривая асимптотическая: она достигает своего установившегося (стационарного) значения лишь по прошествии бесконечного по величине отрезка времени.

Факторы, определяющие характеристики йодных ям. И глубина йодной ямы, и время наступления её максимума для конкретного реактора определяются только уровнем стационарной мощности, на котором реактор работал до останова.

Переотравления реактора ксеноном после изменения уровня мощности В принципе, конечный результат переотравления реактора ксеноном по прошествии достаточно длительного времени после перехода реактора с одного стационарного уровня мощности (Np1) на другой стационарный уровень мощности (Np2) мы с нашими знаниями отравления уже способны предсказать.

Расчёт изменений потерь реактивности за счёт переотравлений реактора

ОТРАВЛЕНИЯ РЕАКТОРА САМАРИЕМ-149 Самарий-149 - сильный шлак первой группы. Его стандартное микросечение радиационного захвата sаоSm = 40800 барн, а период полураспада Т1/2Sm = 13.84 года, то есть практически он стабилен. Почему же в таком случае он фигурирует в разговоре об отравлении, а не о шлаковании реактора?

Нестационарное переотравление реактора самарием после останова («прометиевый провал») Тот факт, что при работе реактора в нём накапливается прометий-149, а самарий получается, главным образом, в результате его b-распада, позволяет предсказать, что после останова реактора количество самария в нём должно увеличиваться за счёт b-распада накопленного при работе прометия. А это значит, что отравление реактора самарием после останова реактора должно усиливаться.

Переотравление самарием после пуска длительно стоявшего реактора Попробуем проверить свой уровень понимания самариевого отравления реактора и ответить на вопрос: что будет происходить с величиной отравления реактора самарием, если после длительной (более 15 суток) стоянки реактор пускается вновь и работает на постоянном уровне мощности?

СРЕДСТВА  УПРАВЛЕНИЯ РЕАКТОРОМ И ИХ ЭФФЕКТИВНОСТЬ ЭФФЕКТИВНОСТЬ СТЕРЖНЯ-ПОГЛОТИТЕЛЯ  И ГРУППЫ ПОГЛОТИТЕЛЕЙ Действие вводимого в активную зону стержня-поглотителя

Эффективный радиус стержня-поглотителя Из общей физики известны понятия чёрного тела и абсолютно чёрного тела. Подобными понятиями оперирует и теория возмущений.

Физический вес нецентрального подвижного поглотителя Опыт свидетельствует, что один и тот же подвижный поглотитель, имеющий при размещении на оси симметрии данного реактора определённый физический вес rст0, будучи перемещённый на некоторое расстояние r от оси реактора, изменяет величину физического веса.

Особенности характеристик укороченных поглотителей Стержни-поглотители с длиной, меньшей величины высоты активной зоны называются короткими или укороченными.

Простейшие методы градуировки подвижных поглотителей Градуировка поглотителя – это экспериментальное получение его физических характеристик – кривых дифференциальной и интегральной эффективности.

БОРНОЕ РЕГУЛИРОВАНИЕ  ВВЭР Сущность борного регулирования Большие кампании активных зон энергетических реакторов требуют больших начальных запасов реактивности (15 ¸ 22 bэ), а, значит, и больших количеств поглотителей для их компенсации. Но перемещения в активной зоне «тяжёлых» поглотителей может вызывать сильное искажение нейтронного поля в реакторе, увеличивая неравномерность распределения Ф(r,H) и тем самым снижая экономические показатели работы энергоблока. Более того, в некоторых случаях перекосы нейтронного поля могут быть опасными, поскольку они приводят к возникновению неустойчивости нейтронного поля в реакторе.

РАСЧЁТНОЕ  ОБЕСПЕЧЕНИЕ ЯДЕРНОЙ БЕЗОПАСНОСТИ ВВЭР ПРИ ЕГО ЭКСПЛУАТАЦИИ Ядерный реактор, как следует из всего рассмотренного ранее, является достаточно опасным инженерным сооружением. Именно поэтому оператору всякий раз, прежде чем браться за ключи управления, требуется представить, как реактор отзовётся на предпринимаемое воздействие и к чему может привести это воздействие. Разумеется, в процессе накопления управленческого опыта оператор приобретает некоторые навыки, позволяющие ему действовать без больших умственных нагрузок, почти автоматически, будучи уверенным при этом, что ничего серьёзного или опасного для реактора эти действия не повлекут.

Алгоритм расчёта пусковой концентрации борной кислоты

Время снижения концентрации борной кислоты до заданной величины Представьте себе: на реакторной установке с ВВЭР, находящейся в подкритическом состоянии, которое обеспечивается за счёт величины стояночной концентрации борной кислоты (Сст), начинается процедура пуска. То есть система борного регулирования переключается в режим подпитки первого контура чистым дистиллатом с заданным постоянным расходом Gп. Требуется определить, сколько времени должна работать система подпитки в таком режиме до момента, когда концентрация борной кислоты в контуре снизится до заданного значения С1 (в частности, это может быть величина пусковой критической концентрации Сп).
Кратные и криволинейные интегралы