Курс лекций и задач по физике Лабораторные работы Математика Дизайн Начертательная геометрия Основы получения ядерной энергии

Классификация приборов микроволнового диапазона

В настоящее время разработано много приборов, отличающихся как принципом действия, так и областью применения. На рис. 1.4. приведена классификация электронных приборов СВЧ, а на рис. 1.5. — квантовых приборов. Данная классификация не претендует на полноту и не является единственно возможной.

Электровакуумные приборы СВЧ диапазона могут быть по характеру энергообмена разделены на приборы типов О и М. В приборах типа О происходит преобразование кинетической энергии электронов в энергию СВЧ поля в результате торможения электронов этим полем. Магнитное поле или не используется совсем, или применяется только для фокусировки электронного потока и принципиального значения для процесса энергообмена не имеет. В приборах типа М, которые еще также называются приборами со скрещенными полями (потому что постоянное магнитное поле перпендикулярно постоянному электрическому полю, ускоряющему электроны) в энергию СВЧ поля переходит потенциальная энергия электронов.

Рис. 1.4. Классификация электронных приборов СВЧ Задача В трехфазную трехпроводную цепь с симметричным линейным напряжением UЛ=120 В включены треугольником активные сопротивления RAB=5 Ом, RBC=9 Ом и RCA=12 Ом. Определить фазные и линейные токи, активную мощность всей цепи и каждой фазы в отдельности. Построить векторную диаграмму цепи.

По продолжительности взаимодействия с СВЧ полем приборы разделяются на приборы с кратковременным (прерывным) и длительным (непрерывным) взаимодействием. В первом случае используется взаимодействие электронов с СВЧ полем резонаторов, а во втором — с бегущей электромагнитной волной.

Приборы с кратковременным взаимодействием одновременно являются приборами типов О (пролетные и отражательные клистроны). Приборы с длительным взаимодействием могут быть как типа О — ЛБВ, ЛОВ, так и типа М — ЛБВМ, ЛОВМ, магнетрон, платинотрон. По типу управления электронным потоком приборы подразделяются на приборы с электростатическим и динамическим управлениями.

В полупроводниковых приборах СВЧ выделяются группа диодов с отрицательным сопротивлением и группа СВЧ транзисторов.

Квантовые приборы (рис. 1.5) обычно разделяются на два класса в зависимости от диапазона рабочих частот. В СВЧ диапазоне это мазеры и квантовые стандарты частоты, а в оптическом — лазеры. Затем лазеры подразделяются в зависимости от агрегатного состояния активного вещества на газовые, твердотельные, жидкостные, полупроводниковые. Хотя используемые в квантовой электронике полупроводники являются твердыми телами, полупроводниковые лазеры выделены в отдельную группу связи с тем, что характер генерации в полупроводниках существенно отличается от генерации в обычных твердотельных квантовых генераторах.

Рис. 1.5. Классификация квантовых приборов

В зависимости от режима работы различают лазеры, работающие в непрерывном режиме, в импульсном режиме с длительностью импульсов 10-3—10-6 с, режиме гигантских импульсов длительностью 10-7— 10-9 с и режиме синхронизации мод, при котором длительность импульса может быть 10-10—10-12 с.

Контрольные вопросы:

В каких областях телекоммуникации используют СВЧ и оптический диапазоны?

Поясните основные достоинства и недостатки микроволнового диапазона.

В чем заключаются статический и динамический принципы управления преобразованием энергии?

Какое состояние потока электронов называют равновесным?

В чем заключается возможность управления энергообменом ансамбля электронов с электромагнитным полем?

По каким признакам производится классификации приборов СВЧ диапазона?

Система схемотехнического моделирования Electronics Workbench предназначена для моделирования и анализа электрических схем. Программа Electronics Workbench позволяет моделировать аналоговые, цифровые и цифро-аналоговые схемы большой сложности. Имеющиеся в программе библиотеки включают в себя большой набор широко распространенных электронных компонентов. Есть возможность подключения и создания новых библиотек компонентов.

Рассмотрим алгоритм решения на примере цепи Если по условию задачи внутренним сопротивлением источников (r01, r02 т. д.) пренебречь нельзя, и они заданы, то их необходимо ввести в расчетную схему, включая последовательно с соответствующим источником. По признакам, данным в определении независимого контура, можно выделить следующие независимые контуры: a-b-c-g-a (контур I), c-d-e-g-c (контур II), a-g-e-f-a (контур III). 2. Направление обхода указывается стрелкой снаружи схемы. Направление обхода по контурам выбрали совпадающим с направлением движения часовой стрелки. 3. Направления контурных токов в независимых контурах выбрали такими же, как и направления обхода контуров, по часовой стрелке.

Рабочее задание: 1.По заданным значениям напряжения, частоты и параметров элементов найдите символическим методом токи во всех ветвях и напряжения на всех элементах цепи. 2.Составьте баланс комплексных мощностей. 3.Постройте в масштабе векторные диаграммы токов и напряжений.

Цель работы: настоящее домашнее задание ставит своей целью систематизировать знания, полученные при изучении раздела «электропривод» курса электротехники, и привить навык по выбору мощности двигателя для конкретного электропривода.

Особенности микроволнового диапазона и динамического принципа управления преобразованием энергии

Достоинства и недостатки использования микроволнового диапазона. Электромагнитные колебания микроволнового и оптического диапазонов обладают целым рядом специфических особенностей и свойств, отличающими их от смежных участков спектра. На сверхвысоких частотах длина волны соизмерима с линейными размерами физических тел. Геометрические размеры схемотехнических элементов аппаратуры, в том числе и антенн, также оказываются соизмеримыми с длиной волны и могут значительно превышать ее. Поэтому волны диапазона СВЧ обладают квазиоптическими свойствами, т. е. по характеру распространения приближаются к световым волнам. Наряду с этим принципы работы СВЧ устройств в значительной мере определяются явлениями дифракции и не могут непосредственно использовать законы геометрической оптики, а также законы обычных электрических цепей.

Особенности динамического принципа управления преобразованием Идея динамического управления процессом преобразования энергии предполагает возможность управления эффективностью энергообмена между электронным потоком, пронизывающем область локализации выходного электромагнитного поля и этим полем. При этом управление производится путем воздействия на электронный поток со стороны входного электромагнитного поля, локализованное в другом или том же самом межэлектродном промежутке.


http://predtm.ru